在近几年的高考中,函数思想主要用于求变量的取值范围、解不等式等,方程观点的应用可分为逐步提高的四个层次:

  (1)解方程;

函数与方程的解题方法及总结 职场范文

  (2)含参数方程讨论;

  (3)转化为对方程的研究,如直线与圆、圆锥曲线的位置关系,函数的性质,集合关系;

  (4)构造方程求解。

  高考函数与方程思想的命题主要体现在三个方面:

  ①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;

  ②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;

  ③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

  类型一、函数思想在方程中应用

  类型二、函数思想在不等式中的应用

  类型三、函数思想在数列中的应用

  类型四、函数思想在立体几何中的应用

  【点评】对于函数图象的识别问题,若函数y=f(x)的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间。

[函数与方程的解题方法及总结]相关文章: